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Semi-analytical method for departure point determination
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SUMMARY

A new method for departure point determination on Cartesian grids, the semi-analytical upwind path
line tracing (SUT) method, is presented and compared to two typical departure point determination
methods used in semi-Lagrangian advection schemes, the Euler method and the four-step Runge–Kutta
method. Rigorous comparisons of the three methods were conducted for a severely curving hypothetical
�ow �eld and for advective transport in the rotation of a Gaussian concentration hill. The SUT method
was shown to have equivalent accuracy to the Runge–Kutta method but with signi�cantly improved
computational e�ciency. Depending on the case being simulated, the SUT method provides either
far greater or equivalent computational e�ciency and more certain accuracy than the Euler method.
Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The ability to numerically simulate regional-scale �uid �ow allows accurate weather forecast-
ing and ocean modelling. The capacity to �nely resolve complex �uid �ow enables enhanced
understanding of compressible and incompressible �uid dynamics. One of the main concerns
in both numerical weather prediction and computational �uid dynamics is computational e�-
ciency while maintaining accuracy. For example, maximum permissible model time step used
to represent advection has been limited by stability concerns as well as model accuracy [1].
The traditional stability constraint on advection imposed by the Courant–Friedrichs–Lewy

(CFL) restriction, CFL¡1, limits the acceptable time step in Eulerian frameworks,

CFL= ui
�t
�xi

(1)
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122 N. MARTIN AND S. M. GORELICK

where ui is the velocity component in the xi direction, �xi is computational volume length
in the xi direction, and �t is the model time step. An Eulerian model describes �uid �ow
from �xed points in space and provides computational simplicity because the locations of
these points are known in advance. However, Lagrangian representations, which describe
�uid �ow from the vantage point of a moving �uid particle, are not limited by the CFL
restriction on model time step. To circumvent the CFL restriction, numerical models combine
Lagrangian and Eulerian techniques. A variety of slightly di�erent combinations of Eulerian
and Lagrangian representations exist.
In this paper, we are concerned with methods that employ Lagrangian representations to

determine values for advected quantities at regularly spaced model grid points. We refer to
these methods as semi-Lagrangian schemes [1] even though Eulerian–Lagrangian methods
[2, 3] and the modi�ed methods of characteristics [4] have been previously employed to
describe similar algorithms.

1.1. Semi-Lagrangian schemes

In semi-Lagrangian schemes, advection processes are modelled by travelling with the �uid
across an underlying Eulerian model grid. Any conservative quantity, like momentum or
scalar concentration, will have a constant value along a trajectory of �ow [5]. Equation (2)
provides a description of the advection of passive concentration, C, and Equation (3) describes
the self-advection of momentum in a constant density �uid. In Equations (2) and (3), t is
time, and ui is velocity in the xi direction. The Lagrangian component of a semi-Lagrangian
scheme involves tracing �uid trajectories. The Eulerian component interpolates between the
known advection-related quantities (e.g. C or u) on the underlying model grid to provide
values at points along a �uid trajectory.

DC
Dt

=
@C
@t
+ u · ∇C=0 (2)

Du
Dt
=

@u
@t
+ u · ∇u=0 (3)

A common method of semi-Lagrangian solution for Equation (2) or (3) is to solve the
material derivative component, DC=Dt or Du=Dt, for C or for u by following the path lines
of �uid particles. This formulation takes advantage of the constant value of the advected
quantity along the trajectory of �ow and solves for the spatial displacement, given the un-
derlying velocity �eld, that occurs in the time interval. As an example of this approach,
Equation (4) provides an approximate integration of Equation (2) along a �uid trajectory,
where xM is the trajectory end point, and � is the displacement distance across the trajectory.
Equation (4) gives a semi-Lagrangian representation for passive concentration, and the similar
semi-Lagrangian relationship for self-advection of momentum would replace C with u.

C(xM ; t +�t)− C(xM − �; t)
�t

= 0 (4)

The application of a semi-Lagrangian path line tracing scheme is a two-step process [1, 3].
In the �rst step, a discrete set of particles that arrives at a regular set of grid points is traced
backward over the current time step to �nd the particles’ departure points [5] (e.g. (xM − �)
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Particle destination location (xM,yM)

Particle path line

Particle departure point (x1,y1)

Locations used for bicubic interpolation

Fluid velocity vectors

Figure 1. Two-step, semi-Lagrangian representation of advection for uniform �ow around the top-half
of a submerged cylinder. The �rst step is path line tracing from the particle destination point, (xM ; yM ),
to the particle departure point, (x1; y1). Given the particle departure point, the value for the advective
quantity is obtained by interpolation from the surrounding grid points. The stars provide the locations
employed in bicubic Lagrange polynomial interpolation. The uniform �ow around the top-half of a

submerged cylinder scenario is examined in greater detail in Section 3.1.

in Equation (4)). The particles destination points are the initial, regular set of grid points.
In terms of methods of characteristics, the characteristic ending at each grid point of interest
is followed to the foot location [4] in the �rst step. The second step is the determination
of the value of the advected quantity at the departure point, (e.g. C(xM − �; t) in Equation
(4)). Because the departure point will likely not coincide with a model grid point or other
location where the advected quantity is de�ned, the value is interpolated from the surrounding
model-grid points or is integrated across the surrounding elements.
Figure 1 displays this two-step process on a two-dimensional Cartesian grid; the �rst step

is tracing the particle path line from the destination point (xM ; yM ) to the departure point
(x1; y1). The second step, in Figure 1, is the interpolation of the quantity of interest from the
surrounding known values from the computational grid. The overall accuracy of this type of
semi-Lagrangian method is sensitive to the accuracy of both the departure point location and
to the interpolation or integration method [5, 6]. The focus of the remainder of this paper is
on step 1, departure point determination.

1.2. Departure point calculation methods

The �rst step in a semi-Lagrangian scheme is to determine departure points for particles
with destination points located at a set of grid points. The departure points could be particle
locations after a complete model time step, �t, or the mean value theorem could be applied
to permit the use of the midpoint of the particle trajectory as the average, advected value [7].
Finding the location of either the midpoint or the departure point involves tracing the path
lines of the particles, originally located at the regular set of grid points, across all or part of
the current time interval.
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124 N. MARTIN AND S. M. GORELICK

Although semi-Lagrangian schemes are not subject to the CFL¡1 restriction on model
time step, �t, the grid-based velocity values employed for path line tracing must correspond
to the grid location of the particle. As the particle moves across the simulation domain the
velocity values employed for path line tracing must be from the local neighborhood of the
current particle location. As a result, the CFL¡1 criterion stipulates the duration of the partial
time step, �, that can be employed for path line tracing. Each partial time step corresponds
to the travel distance of the particle so that the particle will not travel beyond the local area
without updating the velocity values used to calculate the particle path line. For departure
point determination when �t provides CFL¿1, departure points are located by moving back
a number of partial time steps, M , so that the CFL¡1 criterion is not exceeded for each
partial time step, �, and so that the sum of partial time steps is equal to the model time
step.

�t=M × � (5)

Departure point determination methods are characterized by the number of steps necessary to
calculate particle positions at the end of a partial time step and by the time level, superscript
n, of the velocity values employed to calculate the position (i.e. the method is implicit,
n + 1, or explicit, n). In the remainder of the equations in this paper, the superscript on
velocity variables refers to the model time step. Superscript n is the current time level; n+1
denotes the current time level plus �t. The subscript on velocity variables denotes spatial
location.
Groundwater and surface �ow semi-Lagrangian schemes generally employ explicit, linear,

multi-step path line tracing methods or Runge–Kutta methods for departure point location.
One-step, or Euler method, algorithms have been employed for path line tracing in semi-
Lagrangian scalar transport and in the self-advection of momentum [2, 8, 9].
Modi�ed one-step methods that employ the four corners of a computational volume have

been employed for self-advection of momentum [10, 11]. Two-step linear methods have been
employed for scalar advection [12]. Four-step Runge–Kutta methods have also been used
in both scalar transport [13] and for the self-advection of momentum [14, 15]. Even �fth-
order Runge–Kutta–Fehlberg integration has been employed in �uid dynamics calcula-
tions [4].
In numerical weather prediction, semi-Lagrangian schemes generally use implicit, linear,

multi-step methods for path line tracing. Implicit methods improve the stability of the scheme
but require an interpolation and extrapolation of velocity values to the new time step [16] and
require iteration to obtain the �nal solution [17]. After the extrapolation of velocity values
to the unknown time (n+ 1), linear multi-step methods are employed in an iterative manner
to obtain the implicit solution for particle location. To extrapolate the velocity values, both
two [18, 19] and three time level schemes have been adopted [1, 19]. An implicit midpoint
algorithm is commonly used for departure point determination in atmospheric applications
[7, 19, 20] and the departure point is not the end point but the midpoint of the trajectory.
Second order, implicit Runge–Kutta methods have also been used [7, 21]. In terms of the
in�uence of departure point location on accuracy, use of the trajectory endpoint rather than
the midpoint is more accurate in spherical geometries in some cases [22]. Also, departure
point location with trajectory calculations was found to create a small error in comparison to
a situation where the departure point was known exactly [23].
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2. SEMI-ANALYTICAL PATH LINE TRACING FOR DEPARTURE
POINT DETERMINATION

The purpose of this paper is to introduce a new path line tracing method for departure point
determination in semi-Lagrangian schemes on Cartesian grids. The new method is a semi-
analytic scheme obtained by modifying a forward-in-time path line tracing method employed
in groundwater particle-tracking applications [24] that generally provides increased accuracy
compared to linear, explicit, multi-step methods [25]. The underlying assumption of the semi-
analytic method for forward-in-time particle tracking is that each directional velocity compo-
nent varies linearly in its coordinate directions within each computational volume or cell. A
linear variation in velocity in each direction within the volume allows the derivation of an
analytical expression for the path line of a particle across a volume [24].
This semi-analytic solution, provided in Reference [24], can easily be modi�ed to trace a

particle path backward-in-time to the departure point for the �rst step of a semi-Lagrangian
scheme. The result is the SUT method for departure point determination. Figure 2 provides
the layout of the SUT scheme for tracing a path line, or tracking a particle, backward-in-
time across a single computational volume in two dimensions, but the method can easily be
extended to three dimensions [24, 25]. Equations (6) and (7) provide the analytic solution
for the path line exit point (Xe; Ye). In Equations (6) and (7), Xp and Yp provide the par-
ticle current location on the volume boundary; Uxp and Vyp provide the x- and y-directions
velocity components at (Xp; Yp) which are calculated assuming a linear velocity variation
from Equation (8); x2 provides the x-co-ordinate of the upwind x-direction volume boundary;

Ux1 Ux2

Vy1

Vy2

(Xp,Yp)

(Xe,Ye)

x2x1

y2

y1

Figure 2. Schematic layout for the semi-analytical upstream path line tracing (SUT) method for back-
ward-in-time particle tracking, (Xp; Yp) is the particle entry point into the computational volume. (Xe; Ye)
is the calculated particle exit point from the computational volume. The downstream x-boundary of the
computational volume is x2; the upstream x-boundary is x1. The downstream y-boundary of the com-
putational volume is y2; the upstream y-boundary is y1. The downstream velocity component in the
x-direction is Ux2, and the upstream x-direction velocity component is Ux1. The downstream velocity

component in the y-direction is Vy2, and the upstream y-direction velocity component is Vy1.
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y2 gives the y-co-ordinate of the upwind y-direction volume boundary; Ux2 is the velocity
at the upwind x-direction boundary; Vy2 is the velocity at the upwind y-direction boundary;
Ax and Ay are the velocity gradients across the computational volume to be traversed in the
x- and the y-directions, Equation (9), and �e is the partial time step duration necessary for
a particular particle to travel across the current volume, given in Equation (10). In Equation
(9), Ux1 and Vy1 are the velocities at the downwind x- and y-volume boundaries, respectively,
and �x and �y are the distances across the computational volume in the x- and y-directions.
Equations (6)–(10) are given in explicit form (velocity terms have superscript n). However,
an implicit formulation could be conceived by employing extrapolated velocities in a manner
similar to the modi�cations of the semi-analytical path line method employed for particle
tracking in transient groundwater �ow [26].

Xe = x2 − 1
Ax

[
Un

x2 − Un
xp

exp(Ax�e)

]
(6)

Ye = y2 − 1
Ay

[
Vn

y2 − Vn
yp

exp(Ay�e)

]
(7)

Un
xp = Un

x2 − Ax(x2 − xp); V n
yp
= Vn

y2 − Ay(y2 − yp) (8)

Ax =
Un

x2 − Un
x1

�x
; Ay=

Vn
y2 − Vn

y1

�y
(9)

�ek;p = min

(
1
Ax
ln
[Un

xp

Un
x1

]
;
1
Ay
ln

[
Vn

yp

V n
y1

]
;�t −∑�ek;p

)
(10)

Equation (10) enforces the CFL¡1 restriction on particle travel distance with the semi-
analytic method because it ensures that a particular particle, p, will travel completely across
the local volume or will travel the distance stipulated by the model time step but will not
travel past the local volume boundary. Remembering that particles are initially located at each
grid point of interest for P total destination points, p=1; : : : ; P, the time of traversal must be
calculated for every particle travelling through each volume, for k=1; : : : ; K total volumes.
When the sum of partial time steps would exceed the duration of the model time step, the
�nal partial time step is cut short to ensure that the sum of partial time steps equals the
model time step. As a result, Equation (11) gives the relation between partial time steps for
a particular particle, �ek; p , and model time step, �t.

�t =
K∑

k=1
�ek;p (11)

This semi-analytical method of SUT provides a one-step particle departure point solution
that can be employed for departure point location in semi-Lagrangian schemes for both the
self-advection of momentum and advective transport. This method is one-step because
the particle location at the end of the partial time step in one-direction is calculated with
the solution of one equation, Equation (6). In the SUT method, each particle can travel
completely across a computational volume, provided that �t¿�e, in each step. Because of
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the semi-analytic nature of the method, SUT can provide a more accurate departure point
determination than other one-step methods.

3. COMPARISON OF DEPARTURE POINT METHODS

The Runge–Kutta family of linear multi-step methods is commonly employed in ground-
water, surface water, and numerical weather prediction applications for departure point
determination. In this family of methods, improvement in location accuracy is obtained by
increasing the number of steps. For example, the one-step Euler method is spatially �rst-order
accurate while the four-step, classical Runge–Kutta method is spatially fourth-order accurate.
To compare the SUT method to this family of methods, we examine representative end-
members, the one-step Euler scheme and the four-step classical Runge–Kutta scheme, of the
family.
The Euler scheme is one-step because a single calculation or step along the �uid trajec-

tory can be taken as long as the �uid particle does not leave the local domain of in�uence
during the step. The CFL criterion, equation (1), governs the extent of the local domain
of in�uence. If the time interval for integration, the model time step �t, will result in a
departure point location outside of the local domain of in�uence, then multiple partial time
steps, s=M;M − 1; : : : ; 1, are employed to reach the departure point, (x1; y1), in Equations
(12) and (13). Equation (14) provides the calculation for maximum partial time step dura-
tion, �, that meets the CFL constraint for two-dimensional applications. This number of time
steps could be modi�ed to obtain the midpoint by multiplying �t in Equation (5) by 0.5.
Equation (14) presents the relationship between model time step, �t, and partial time step,
�. In Equations (12)–(14), �x is the model discretization length in the x-direction, �y is
the model discretization length in the y-direction, U is the x-direction velocity component, V
is the y-direction velocity component, the superscript n gives an explicit velocity value, and
the subscript k on the superscript n denotes bilinear interpolation from the surrounding model
grid velocity values.

xs−1 = xs − �Unk
xs; ys

(12)

ys−1 = ys − �V nk
xs; ys

(13)

�6 min
[

�x
maxi; j |Un| ;

�y
maxi; j |Vn|

]
(14)

Spatially, fourth-order accurate, four-step, explicit Runge–Kutta schemes, see Equations (15)
and (16), have been widely employed for path line tracing [25]. Equations (15) and (16) use
the same symbolic notation as Equations (12) and (13) with the subscript representing location,
with the superscript, n, denoting an explicit velocity value, and with the subscript, k, on n
specifying bilinear interpolation. The same partial time step restrictions from Equation (14)
govern the value of �. Bilinear interpolation is employed for the velocity values because little
di�erence has been found in trajectory location between using bilinear and cubic interpolation
[1, 19]. Equations (12), (13), (15), and (16) are shown in explicit form; however, these same
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path line tracing methods can be employed in implicit, iterative formulations.

xs−1 = xs − �
6

(
Unk

xs; ys
+ 2Unk

xsp1 ; ysp1
+ 2Unk

xsp2 ; ysp2
+Unk

xsp3 ;ysp3

)

xsp1 = xs − Unk
xs; ys

�
2

xsp2 = xs − Unk
xsp1 ; ysp1

�
2

xsp3 = xs − Unk
xsp2 ; ysp2

�

(15)

ys−1 = ys − �
6

(
Vnk

xs; ys
+ 2Vnk

xsp1 ; ysp1
+ 2Vnk

xsp2 ; ysp2
+ Vnk

xsp3 ; ysp3

)

ysp1 = ys − Vnk
xs;ys

�
2

ysp2 = ys − Vnk
xsp1 ; ysp1

�
2

ysp3 = ys − Vnk
xsp2 ; ysp2

�

(16)

Two di�erent test scenarios were chosen to compare departure point determination using
the SUT method, Equations (6)–(10), to the one-step explicit, Euler method, Equations
(12)–(14), and the explicit four-step classical Runge–Kutta method, Equations (14)–(16).
For the remainder of the paper, the three methods will be referred to as the SUT method,
the Euler method, and the Runge–Kutta method, respectively. The �rst test case is path line
tracing around the top-half of a submerged cylinder, and the second scenario is the application
of semi-Lagrangian advective transport to the rotation of Gaussian concentration hill.

3.1. Flow around the top-half of a submerged cylinder

The �rst �ow scenario, displayed schematically in Figure 1, employed to compare the three
di�erent methods is �ow around the top half of a submerged cylinder centred on the origin
[27]. An analytic solution in radial coordinates exists for the velocity �eld and for streamlines
in this scenario. The stream function, radial component, and angular component of velocity
are given by

vr =U
(
1− a2

r2

)
cos � (17)

v� =−U
(
1 +

a2

r2

)
sin � (18)

 =U r
(
1− a2

r2

)
sin � (19)

where vr is the radial velocity, v� is the angular velocity, r is the radial distance, a is the
radius of the cylinder, U is the magnitude of uniform �uid velocity away from the cylinder,  
is the stream function, and � is the angle. In this scenario, a cylinder of radius 8m is centred
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Figure 3. Path line tracing in uniform �ow around a submerged half-cylinder with
�x=�y=0:2500 m. The destination point, or initial location (xM ; yM ), for all three meth-
ods is in the large circle on the right. The calculated departure point, (x1; y1) for all three
methods is in the large rectangle on the left. The time interval, �t, for path line tracing
is 20 s. For each method, the destination location, s=M , the �nal location, s=1, and every

10th location, s=M − 10; M − 20; M − 30; : : : ; 1, are marked.

on the origin in uniform �ow of 1:0m=s. The radial velocities were transformed into Cartesian
component velocities located in the centre of the faces of square computational volumes. A
streamline running through the x-direction velocity location chosen as the destination point
was calculated with Equation (19) and transformed into Cartesian co-ordinates to compare the
particle path lines generated with the three methods. The destination point was chosen close
enough to the submerged cylinder so that the velocity variations in the traversed computational
volumes would be non-linear. Two di�erent size computational volumes, �x=�y=0:250m
and �x=�y=0:0833 m, were employed in separate sets of simulations for each method. A
total time step, �t, of 20.0 seconds was used to ensure that the tracked particles would travel
completely past the cylinder. Using Equation (20) and umax, which is the maximum Cartesian
directional velocity component, of 2:0 m=s, the grid Courant numbers, Crmax, for �x=0:250
and 0.0833 are 160 and 480, respectively.

Cr= umax
�t
�x

(20)

Figure 3 displays the results obtained with the coarse resolution, �x=�y=0:250 m. The
initial location, or destination point, is on the right side of the �gure and �ow is from left
to right. The calculated departure points are on the left side. In Figure 3 locations are shown
for each method for the destination point, the departure point location, and for every tenth
location, s=M;M − 10; M − 20; M − 30; : : : ; 1.
Table I displays the results for this scenario. Here, relative calculation time is the average

calculation time for 10 identical simulations for a particular method divided by the average
calculation time for the SUT method for ten equivalent simulations. Calculation time was
determined with a CPU ‘stopwatch timer.’ Error in percentage of �x is the distance from
the calculated departure point to the actual departure point divided by �x and multiplied by
100. In this scenario the ‘true’ departure location was obtained using the Runge–Kutta method
with the �ner grid resolution and by doubling the number of partial time steps, M , until the
departure point location converged to eight signi�cant digits.
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Table I. Results for �ow around the upper half of a cylinder for �x=�y=0:250 m.

Method M∗ x†
1 y†

1 Relative time‡ Error in % �x§

SUT 128 −9:885 4.047 1.00 0.99

Euler 158 −9:945 4.307 0.47 113.47
316 −9:914 4.179 0.91 57.90
632 −9:899 4.115 1.77 29.27
1264 −9:891 4.082 3.53 14.72
2528 −9:886 4.065 6.92 7.38
5056 −9:884 4.057 13.88 3.70
10 112 −9:883 4.053 27.75 1.85
20 224 −9:883 4.051 55.86 0.93
40 448 −9:883 4.050 110.89 0.47
80 896 −9:883 4.049 220.80 0.24
161 792 −9:882 4.049 442.31 0.12

Runge–Kutta 158 −9:883 4.049 1.54 0.07
316 −9:882 4.049 3.17 0.04

∗M is the number of partial time steps necessary to trace the path line for the model time step of
20 s.
†(x; y) gives the x- and y-co-ordinates of the departure point location.
‡Relative time is the average computational time for a particular method across ten identical simula-
tions divided by the average computational time for the SUT method across 10 identical simulations.
Computational time is calculated with a stop watch timer.
§The error in % of �x is the distance between the calculated (x; y) and the solution (x; y) divided by
�x and multiplied by 100. The solution (x; y) was obtained by doubling the number of partial time
steps, M , for the Runge–Kutta method with the �ner discretization, �x=�y=0:0833 m, until (x; y)
converged to eight signi�cant �gures.

From Table I, the Euler method and the Runge–Kutta method employ a minimum of 156
partial time steps, M =156, of duration � from Equation (11). The SUT method uses 128
partial time steps, M =128, because the tracked particle traverses all or part of 128 computa-
tional cells. The duration of each partial time step, �e, for the SUT method is calculated with
Equation (9).
Even though the velocity variations are non-linear in this case and the SUT method assumes

linear velocity variation, the SUT method and the Runge–Kutta method provide similar depar-
ture point locations. The Runge–Kutta method provides a slightly more accurate �nal location
because the velocity variation in each coordinate direction across each computational volume
traversed is not linear. However, the Runge–Kutta method requires 50% more computational
time than the SUT method to obtain a departure point location.
The departure point location obtained with the Euler method is displaced by more than

one volume length, �x, from the ‘true’ location when the partial time step duration from
Equation (14) is employed. To compare an equivalent accuracy Euler method with the SUT
method, the number of partial time steps employed with the Euler method were doubled until
the Euler method departure point corresponds to three decimal places with the ‘true’ departure
point at M =161 792. The �rst doubling of partial time steps, M =2528, where the error in
percentage �x falls below 10% was chosen to compare computational e�ciency of a more

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:121–137



SEMI-ANALYTICAL METHOD 131

Table II. Results for �ow around the upper half of a cylinder with �x=�y=0:0833 m.

Method M∗ x†
1 y†

1 Relative time‡ Error in % �x§

SUT 380 −9:882 4.049 1.00 0.97

Euler 479 −9:924 4.135 0.45 115.32
958 −9:904 4.092 0.90 58.08
1916 −9:893 4.071 1.80 29.15
3832 −9:888 4.060 3.60 14.60
7664 −9:885 4.054 7.03 7.31
15 328 −9:884 4.051 14.25 3.66
30 656 −9:883 4.050 28.33 1.83
61 312 −9:883 4.049 56.41 0.91
122 624 −9:883 4.049 104.25 0.46
161 792 −9:883 4.049 133.79 0.35
245 248 −9:882 4.049 200.02 0.23

Runge–Kutta 479 −9:882 4.049 1.59 0.02

∗M is the number of partial time steps necessary to trace the path line for the model time step of
20 s.
†(x; y) gives the x- and y-co-ordinates of the departure point location.
‡Relative time is the average computational time for a particular method across 10 identical simulations
divided by the average computational time for the SUT method across ten identical simulations.
Computational time is calculated with a stop watch timer.
§The error in % of �x is the distance between the calculated (x; y) and the solution (x; y) divided by
�x and multiplied by 100. The solution (x; y) was obtained by doubling the number of partial time
steps, M , for the Runge–Kutta method with the �ner discretization, �x=�y=0:0833 m, until (x; y)
converged to eight signi�cant �gures.

accurate Euler method with the SUT method. To obtain close to the same level of accuracy
as the SUT method, the Euler method requires almost 7 times the computational time.
Table IIpresents the results for the �ner discretization, �x=0:0833. Here, the Euler method

and the Runge–Kutta method employ a minimum of 479 partial time steps, M =479, of
duration � from Equation (11). The SUT method uses 380 partial time steps, M =380, because
the tracked particle traverses all or part of 380 computational cells. Both the SUT method and
the Runge–Kutta method provide essentially the same departure point as the ‘true’ departure
point, but the Runge–Kutta method requires 50% more computational time than the SUT
method.
Again, the Euler method provides a departure point location greater than �x away from the

‘true’ location. A departure point discrepancy of this magnitude can create a signi�cant error
in the interpolated value in the interpolation step of a semi-Lagrangian scheme when using
cubic or higher order interpolation. The number of partial time steps for the Euler method was
doubled until the Euler method departure point is equal to the ‘true’ solution to three decimal
places. At M =7664, the Euler method provides a departure point that is within 0:10�x of
the ‘true’ location. Just as in the coarse resolution scenario, the Euler method requires 7 times
the computational time of the SUT method to obtain this level of accuracy.
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3.2. Rotation of a Gaussian concentration hill

The next application employs the departure point determination schemes in a semi-Lagrangian
representation of the advection of a passive scalar, Equation (2). The semi-Lagrangian algo-
rithm employed here assumes that concentration is de�ned at the center of each computational
volume. Advection of scalar concentration is simulated by �nding the departure point for each
volume center location for each time step and then by employing bicubic Lagrange polyno-
mial interpolation (The stars in Figure 1 provide example of the bicubic Lagrange polynomial
interpolation stencil for a two-dimensional Cartesian grid.) to estimate the concentration at
the departure point. The estimated departure point concentration at time n provides the desti-
nation point concentration at time n+1. Although this semi-Lagrangian method is simple and
non-conservative, the application of the three departure point determination schemes within
the algorithm highlights the in�uence of departure point accuracy on the representation of
advection.
This simple, semi-Lagrangian scheme is employed, using all three departure point deter-

mination methods, to simulate the advection of a Gaussian concentration hill in a rotational
�ow �eld. The concentration solution, Equation (21), and the �ow �eld, Equation (22), were
adapted from Reference [28].

C(x; y; t) = exp(1)−
{
(x − x)2

2�20
+
(y − y)2

2�20

}
(21)

U =−!y; V =!x (22)

In these equations, C is concentration in kg=m3; x is the x-co-ordinate of the centre of the
concentration hill; y is the y-co-ordinate of the concentration hill centre; �0 is the standard
deviation of the initial concentration hill, and ! is the angular velocity.
Figure 4 presents the rotation scenario employed in this application for comparison of

the three departure point determination methods. The simulation domain is 101 rows by
101 columns with �x=�y=1:0 m. The standard deviation of the concentration hill is 2.0
and an angular velocity of 1=18 rad=s is employed to give the concentration hill a velocity
of 1 m=s. The initial location of the concentration hill is x0 = 0:0 and y0 = 18:0 m. Maxi-
mum initial concentration is exp(1)≈ 2:72 and minimum initial concentration is 0.0. Flow
is counterclockwise, and each simulation lasts at least 90 s. If the time step duration, �t,
does not divide evenly into 90 s, then the next larger whole number is employed for total
time so that the end of the simulation period will coincide with the end of a model time
step.
Seven di�erent simulations were completed with each departure point determination method

with di�erent time steps, �t, to give Crmax values ranging from 0.5 to 10.0. Figure 5 displays a
mesh surface plot of the simulated concentration hill after 90s using the Runge–Kutta method
for departure point determination and employing �t=10:0 s; all three methods provide similar
surface plots for all of the seven time steps. To examine the in�uence of departure point
location on accuracy of the semi-Lagrangian representation of advection in this scenario, three
di�erent diagnostic error measurements were employed [28, 29]. The ‘1 measure, Equation
(23), is the integral measure of error; ‘2, Equation (24), is the integral measure of squared
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Figure 4. Layout of the advection of a Gaussian concentration hill in a rotational �ow �eld scenario.
The domain has 101 rows and 101 columns with �x=�y=1:0m. The concentration hill has a max-
imum initial concentration of approximately 2:72 kg=m and has a standard deviation of 2.0. The hill is
allowed to travel for at least 90 s in the rotational �ow �eld so that it traverses approximately 3

4 of the
simulation domain. The arrow displays the direction of �uid �ow. During the movement of the hill, the

same side of the hill faces the origin.

error, and ‘inf in Equation (25) provides the maximum local error.

‘1 =

∑Nr
i=1

∑Nc
j=1 |Ci; j − Ĉi; j|∑Nr

i=1

∑Nc
j=1 |Ĉi; j|

(23)

‘2 =

[∑Nr
i=1

∑Nc
j=1 (Ci; j − Ĉi; j)2

]1=2
[∑Nr

i=1

∑Nc
j=1 Ĉ

2
i; j

]1=2 (24)

‘inf =
max∀i; j |Ci; j − Ĉi; j|
max∀i; j |Ĉi; j|

(25)

In Equations (23)–(25), C is solution concentration at the end of the simulation; Ĉ is the
exact solution; Nr provides the number of rows in the simulation domain, and Nc gives the
number of columns.
Table III provides the results from the 21 simulations. The relative ‘1, ‘2, and ‘inf values

are simply the error measurement for a particular method divided by the equivalent error
measurement for the SUT method. As a result, a relative error value of 1.0 is equivalent to
the SUT method; a value less than 1.0 provides a better match to the exact solution than the
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Figure 5. Representative mesh surface plot of the simulated concentration after 90 s. This simulation
employed the Runge–Kutta method and a time step, �t, of 10:0 s. The simulated concentrations with

the SUT method and with the Euler method are similar in appearance.

SUT method, and a value greater than 1.0 is a worse match to the exact solution than the
SUT method. The relative error for a particular method can decrease with increasing time step
if that method’s performance improves relative to the SUT method as time step increases.
However, a decrease in relative error with time step increase does not require that method
provide a better representation of the exact solution with increased time step. Relative time
is calculated in the same manner as in Section 3.1 and is net of I/O.
The results in Table III for the departure point determination methods are similar to those

in Section 3.1. For Crmax values greater than 1.0, the SUT method provides increased com-
putational e�ciency relative to the Runge–Kutta method; the Runge–Kutta method requires
as much as 18% more computational time. However, the SUT method is generally not as
accurate as the Runge–Kutta method in this scenario. The Euler method has more than twice
the relative error of the SUT method in some cases when Crmax is greater than 1.0. In this
scenario, the SUT method provides reasonable, and in some cases comparable, accuracy rel-
ative to the Runge–Kutta method and has signi�cant relative computational e�ciency. For
Crmax values above 1.0, the Euler method has error measures of up to twice the magnitude
of the other two methods.

4. CONCLUSIONS

A new one-step, semi-analytic departure point determination algorithm, the SUT method,
is presented for semi-Lagrangian advection schemes on Cartesian grids. Although the SUT
method is presented in explicit form for endpoint calculations, it can be modi�ed for implicit
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Table III. Results from advection of a Gaussian concentration hill in a rotational �ow �eld.

Total Relative
Method �t[s] Cr∗

max time [s]† Max. C‡ Min. C‡ Relative ‘§
1 Relative ‘§

2 Relative ‘§
inf time¶

SUT 0.5 0.5 90.0 2.24 0.00 1.00 1.00 1.00 1.00
1.0 1.0 90.0 2.68 0.00 1.00 1.00 1.00 1.00
2.0 2.0 90.0 2.75 0.00 1.00 1.00 1.00 1.00
4.0 4.0 92.0 2.71 0.00 1.00 1.00 1.00 1.00
6.0 6.0 90.0 2.72 0.00 1.00 1.00 1.00 1.00
8.0 8.0 96.0 2.68 0.00 1.00 1.00 1.00 1.00
10.0 10.0 90.0 2.71 0.00 1.00 1.00 1.00 1.00

Runge–Kutta 0.5 0.5 90.0 2.29 0.00 0.79 0.70 0.54 0.99
1.0 1.0 90.0 2.65 0.00 0.87 0.83 0.69 0.99
2.0 2.0 90.0 2.74 0.00 0.93 0.89 0.82 1.01
4.0 4.0 92.0 2.72 0.00 0.98 0.96 0.86 1.05
6.0 6.0 90.0 2.72 0.00 0.99 0.98 0.91 1.08
8.0 8.0 96.0 2.68 0.00 0.94 0.92 0.80 1.10
10.0 10.0 90.0 2.71 0.00 0.92 0.93 0.83 1.18

Euler 0.5 0.5 90.0 2.28 0.00 0.80 0.74 0.66 0.98
1.0 1.0 90.0 2.66 0.00 0.96 0.99 0.83 0.95
2.0 2.0 90.0 2.75 0.00 1.16 1.20 1.05 0.95
4.0 4.0 92.0 2.74 0.00 1.52 1.55 1.36 0.90
6.0 6.0 90.0 2.73 0.00 1.84 1.84 1.57 0.85
8.0 8.0 96.0 2.71 0.00 1.87 1.86 1.55 0.81
10.0 10.0 90.0 2.72 0.00 2.19 2.13 1.66 0.80

∗Crmax from Equation (19).
†Total simulation time in seconds is at least 90 s. The total simulation time is set to the next greater whole number
from 90 s so that the end of a model time step, �t, will coincide with the end of the simulation.
‡Maximum and minimum concentrations in kg=m3 remaining at the end of the simulation. Maximum initial con-
centration is exp(1) or approximately 2:72 kg=m3.
§Relative ‘1; ‘2, and ‘inf error measurements are the ‘1; ‘2, or ‘inf value from Equations (27)–(29) divided by the
equivalent error measurement for the SUT method. A value greater than 1.0 stipulates an error value larger than
the SUT value, and a value less than 1.0 denotes a smaller error value than provided by the SUT method.
¶Relative time is the average computational time across 10 identical simulations for a particular method divided
by the average computational time across ten identical simulations for the SUT method. Computational time is
calculated with a stopwatch timer and is net of I/O.

and for midpoint departure point determination. Two test cases were employed to compare the
SUT method to two traditional multi-step methods, the Euler scheme and the Runge–Kutta
scheme.
The �rst scenario, departure point location in a �ow �eld around the top-half of a sub-

merged cylinder, demonstrates the accuracy and e�ciency of the SUT method. The SUT
method still provides close to the same accuracy as the Runge–Kutta method, and the Runge–
Kutta method required approximately 160% of the computational time. The Euler scheme
is relatively inaccurate. To achieve the comparable accuracy of the SUT method, the Euler
method requires seven times the computational time. Compared to traditional methods, the
SUT method provides both accurate departure point location and computational e�ciency.
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The second application applied a semi-Lagrangian representation of advection to simulate
the transport of a Gaussian concentration hill in a rotational �ow �eld. In this case, the sharp
concentration gradients provided by the Gaussian hill produced signi�cant di�erences in the
results obtained with the three methods. For Crmax values greater than 1.0, the Runge–Kutta
method again required the most computational time but provided the smallest error from the
three error measures. The SUT method provided reasonable and in some cases equivalent
accuracy to the Runge–Kutta method and required less computational time. In some cases,
the SUT method required only 90% of the computational time of the Runge-Kutta method.
The Euler method provided the largest error measurements with twice the magnitude of error
of the SUT method in some simulations.
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